Microorganisms

Main sol. 320

$K_2HPO_4 \times 3 H_2O$	1.00	g
NH ₄ Cl	1.00	g
KCI	0.50	g
$MgSO_4 \times 7 H_2O$	0.50	g
Trypticase peptone (BD BBL)	0.50	g
Yeast extract	0.50	g
Clarified rumen fluid	20.00	ml
Sludge fluid, alternative (optional)	20.00	ml
Trace element solution SL-10	1.00	ml
Sodium resazurin (0.1% w/v)	0.50	ml
L-Cysteine HCl x H ₂ O	0.15	g
Na ₂ CO ₃	1.00	g
Cellobiose	5.00	g
Cellulose, MN 301 (optional)	10.00	g
$Na_2S \times 9 H_2O$	0.15	g
Distilled water	1000.00	ml

- 1. Dissolve ingredients (except cysteine, carbonate, cellobiose and sulfide), bring medium to the boil, then cool to room temperature under 80% N_2 and 20% CO_2 gas mixture and add cysteine. Dispense under same gas atmosphere into anoxic Hungate-type tubes or serum vials and autoclave. Add sulfide from a sterile anoxic stock solution prepared under 100% N_2 gas and carbonate from a sterile anoxic stock solution prepared under 80% N_2 and 20% CO_2 gas mixture. Sterilize cellobiose separately by filtration under 100% N_2 gas. Adjust pH of the complete medium to 7.0, if necessary.
- 2. Note: Some strains can be adapted to cellulose as substrate using 10.0 g/l cellulose powder MN 301 (MACHEREY-NAGEL).